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Abstract. We have extended the fractional-dimensional space approach to study exciton states
and diamagnetic shifts in symmetric coupled double GaAs–Ga1−xAlxAs quantum wells. In this
scheme, the fractional dimension is chosen using an analytical procedure, and the real anisotropic
‘exciton + double quantum well’ semiconductor system is mapped, for each exciton state, into an
effective fractional-dimensional isotropic environment. We have performed calculations within
the fractional-dimensional space scheme for the binding energies of 1s-like heavy-hole direct
excitons and for the energy difference between 1s- and 2s-like direct heavy-hole exciton states
in GaAs–Ga1−xAlxAs symmetric coupled double quantum wells. Also, theoretical results were
obtained for the magnetic-field dependence of the 1s-like heavy-hole exciton energy shift and
for the exciton diamagnetic coefficient in quantum wells and symmetric coupled double quantum
wells. Fractional-dimensional theoretical results are shown to be in good agreement with available
experimental measurements and previous theoretical calculations.

1. Introduction

Artificial low-dimensional electron systems, such as semiconductor heterostructures, are of
considerable interest due to their interesting basic physical properties and use in a wide range
of semiconductor devices. Of course, the study of the optical properties of semiconductor
heterostructures provides information on the nature of confined electrons and holes, and is of
relevance for potential application in optoelectronic devices. Excitons essentially dominate
the optical properties of semiconductor systems [1–6]. In particular, the physical behaviour of
coupled double quantum wells (CDQWs) is strongly related to their excitonic properties, and
semiconductor CDQWs have been the subject of intense experimental [7–13] and theoretical
[11, 14–17] investigations in the last decade or so.

Fox et al [8] have used photocurrent spectroscopy to measure the intrawell and interwell
exciton splittings in GaAs–Ga1−xAlxAs coupled QW structures. The mixing of symmetric
and antisymmetric exciton states in GaAs–Ga0.7Al0.3As symmetric coupled double quantum
wells (SCDQWs) was investigated by Westgaard et al [9] by photoluminescence (PL) and
photoluminescence excitation (PLE) spectroscopy. Zhao et al [10] used unpolarized and
polarized PLE measurements to determine the 1s–2s splitting of symmetric heavy-hole excitons
in GaAs–Ga1−xAlxAs SCDQWs. The diamagnetic shift [5, 11, 18] for free excitons was
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obtained experimentally by Zhao et al [11] through PL studies for single quantum wells (SQWs)
and CDQWs. Butov et al [12] studied direct and indirect magnetoexcitons in symmetric
InxGa1−xAs–GaAs coupled QWs by PL and PLE spectroscopy. Similar experimental studies
in GaAs–Ga1−xAlxAs superlattices were performed by Tartakovskii et al [13]. From the
theoretical point of view, most work on exciton states in semiconductor CDQWs have used the
effective-mass envelope function approach and variational procedures [8, 14–16]. Of particular
interest for the present work is the theoretical study of Zhao et al [11], who have extended to
semiconductor SCDQWs the fractional-dimensional space approach developed by Stillinger
[19], He [20], Mathieu et al [21], and Lefebvre et al [22]. In this approach, the Schrödinger
equation for a given anisotropic system is solved in a noninteger-dimensional space where
the interactions are assumed to occur in an isotropic effective environment. This approach
has been recently used with success in the understanding of a number of physical situations
[23–25]. The essential quantity in this scheme is the fractional dimension associated with
the effective medium and the degree of anisotropy of the real system under consideration.
Recently, de Dios-Leyva et al [26–28] have proposed a systematic procedure to determine the
appropriate fractional dimension of the isotropic space which would model the actual system,
in the case of shallow impurities and exciton states in QWs and superlattices. As Zhao et al
[11] have assumed a quite cumbersome ansatz for the fractional dimension in SCDQWs, we
were motivated to extend our previous work [26–28] in QWs and superlattices within the
fractional-dimensional space approach to the case of semiconductor SCDQWs.

In this work we are concerned with direct exciton states and diamagnetic shifts [5, 11, 18]
in GaAs–Ga1−xAlxAs SCDQWs within the fractional-dimensional space approach [19–28].
In section 2 the theoretical basis of the fractional-dimensional scheme, developed by
de Dios-Leyva et al [26–28] for excitons and shallow impurities in QWs and superlattices, is
extended to the case of GaAs–Ga1−xAlxAs SCDQWs. Results and discussion are in section 3,
and conclusions in section 4.

2. The fractional-dimensional space approach

We consider the problem of a direct exciton in a semiconductor GaAs–Ga1−xAlxAs SCDQW
(growth axis along the z-direction), within the effective-mass and non-degenerate-parabolic
band approximations. The dielectric constant ε of the SCDQW is assumed constant throughout
the heterostructure and equal to the 12.5 GaAs bulk value, and we use a 65% (35%) rule
for the conduction- (valence-) barrier potential with respect to the total band-gap difference.
Also, the effective masses were taken, in units of the free-electron mass, as mew = 0.0665,
meb = 0.0665 + 0.0835x, mhw = 0.34, and mhb = 0.34 + 0.42x, in which w and b are labels
for well and barrier, respectively, and e and h denote electron and heavy hole, respectively.

Within the fractional-dimensional scheme, the system ‘exciton + semiconductor
GaAs–Ga1−xAlxAs SCDQW’ may be realistically modelled by an equivalent isotropic
hydrogenic system in a fractional D-dimensional space, a problem which may be solved
analytically. The theoretical extension for GaAs–Ga1−xAlxAs SCDQWs of the framework
developed by Matos-Abiague et al [27] in the case of QWs is straightforward. For a given
state of the anisotropic system, one may choose the D parameter in order to map the actual
system into an equivalent isotropic D-dimensional space via the condition∫

hr2 sin θφ∗
EWφj dr dθ = 0 (2.1)

where we have used the same notation as Matos-Abiague et al [27], and now the confining
potential is a SCDQW potential. The operator W is defined as the difference of the real
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Hamiltonian and the fractional-dimensional approximate Hamiltonian, and is given (see [27])
in terms of the fractional dimension D and functions h and u which depend upon fe and fh
(the z part of the electron and hole ground-state envelope wavefunctions for the SCDQW—see
Thoai [29]):

h(z) =
∫ ∞

−∞
f 2
e (ξ)f

2
h (ξ − z) dξ (2.2a)

u(z) = µw
∫ ∞

−∞

f 2
e (ξ)f

2
h (ξ − z)

µ(ξ, z)
dξ (2.2b)

with µ(ξ, z), for the case of a SCDQW, given by

µ−1(ξ, z) = 1

µw
+

(
1

meb
− 1

mew

)
(�[Lb/2 − |ξ |] +�[|ξ | − (Lw + Lb/2)])

+

(
1

mhb
− 1

mhw

)
(�[Lb/2 − |ξ − z|] +�[|ξ − z| − (Lw + Lb/2)]) (2.2c)

where µw is the reduced mass of the exciton in the GaAs QW (Lb and Lw are the widths of the
barrier and well regions of the SCDQW, respectively), and� is the Heaviside function. Notice
that µ(ξ, z) is a kind of two variable-reduced effective mass calculated with the local electron
and hole masses, which accounts for changes in the effective masses between barrier and well
materials. Moreover, u(z)/µw may be interpreted as an average inverse reduced mass for a
given electron–hole z separation with the confinement wavefunctions f 2

e,h as weights, and this
is a way to account for the broken translational invariance in the z direction. In (2.1), E is the
direct exciton energy with respect to the bottom of the first SCDQW conduction subband, φE is
associated with the exciton envelope wavefunction, and φj and Ej are the eigenfunctions and
eigenvalues of theD-dimensional Hamiltonian [19, 20]. One should notice that equation (2.1)
provides an analytical and systematic procedure for obtaining the D fractional-dimensional
parameter associated with the ground and excited states of the actual anisotropic system. For
evaluating the 1s-like direct exciton binding energy, which is associated with the ground state
E1s , as the φE exact solution is not known one chooses φE = φj=0 in equation (2.1), where
φj=0 is the 1s exact solution of the D-dimensional Hamiltonian, i.e. φj=0 = φ1s(r) = e−λr,
with λ = 2/[a∗

0(D − 1)], where a∗
0 is the effective heavy-hole exciton Bohr radius. One then

obtains (from equation (2.1) and after some algebra) the following transcendental equation to
be solved for the fractional-dimensional parameter D,

(2β − 3)L(α) +G(α)− α d[L(α) +G(α)]

dα
= 0 (2.3)

with

L(α) =
∫ ∞

0
e−αzh(z) dz (2.4)

G(α) =
∫ ∞

0
e−αzu(z) dz (2.5)

β = 3 − D, and α = 4/[a∗
0(D − 1)]. Once the D fractional dimension is obtained, the

1s-like heavy-hole exciton binding energies may then be obtained in a straightforward way
through [19, 20]EB = 4/(D−1)2 Ryd∗, where Ryd∗ is the exciton effective Rydberg. Finally,
we would like to stress that, in the above scheme, the fractional dimension is chosen via an
analytical procedure (cf equation (2.1)), and involves no ansatz [11, 21, 22], and no fitting
with experiment [20, 23] or previous variational calculations [22]. Notice that, for excited
states, one may choose for φE a linear combination of φj (properly orthonormalized with
weight h(z)), and proceed in a similar way to obtain the appropriateD fractional-dimensional
parameter.



5694 A Matos-Abiague et al

0 50 100 150 200

6

8

10

12

0 20 40 60 80 100 120
2.0

2.2

2.4

2.6

2.8

3.0

(a)

L
b
 = 40 Å

L
b
 = 20 Å

SCDQW
 Zhao et al
 this work

B
in

d
in

g
 e

n
er

g
y 

(m
eV

)

Well width (Å)

 Zhao et al
 this work

SCDQW (b)

L
b
 = 20 Å

1s

2s

 

F
ra

ct
io

n
al

 d
im

en
si

o
n

Well width (Å)

Figure 1. Well-width dependence of 1s-like binding energies (a) and fractional-dimensional
parameters (b) for heavy-hole direct excitons in GaAs–Ga0.7Al0.3As SCDQW heterostructures for
fixed Lb barrier thicknesses. Fractional-dimensional parameters obtained in this work are shown
for both the 1s-like and 2s-like exciton states. Full curves correspond to the present fractional-
dimensional results, whereas dashed lines are the theoretical calculations by Zhao et al [11].

3. Results and discussion

Results in this section were then obtained following the procedure just discussed above. The
direct 1s-like heavy-hole exciton binding energy was then obtained within the fractional-
dimensional space approach (by using equation (2.3)), and our exciton theoretical results
for GaAs–Ga0.7Al0.3As SCDQW heterostructures are compared in figure 1(a) with the
corresponding calculations by Zhao et al [11]. One should notice that our calculated exciton
binding energies are significantly different from the results obtained by Zhao et al [11], who
used an ansatz for the fractional dimension. We have also obtained the fractional dimension
for 2s-like heavy-hole exciton states (using equation (2.1)), and our results for both the 1s- and
2s-like exciton states are compared with the fractional dimension ansatz by Zhao et al [11] in
figure 1(b). Note that, in contrast with Zhao et al [11], we obtain different fractional-dimension
parameters for different exciton states, as one would physically expect, since a given exciton
wavefunction would ‘see’ different effective isotropic media, depending on its anisotropy and
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Figure 2. Binding energies for 1s-like heavy-hole excitons in GaAs–Ga0.7Al0.3As SCDQWs
with 14.2 Å or 19.8 Å barrier thicknesses (Lb) as functions of the GaAs well width. Full curves
correspond to the present fractional-dimensional results whereas dashed lines are the variational
calculations by Westgaard et al [9].
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Figure 3. Energy difference between 1s- and 2s-like direct heavy-hole exciton states in GaAs–
Ga0.7Al0.3As SCDQWs as a function of the well width, for two different Lb barrier thicknesses.
Full curves correspond to the present fractional-dimensional results, whereas open and full dots are
experimental values for barrier thicknesses of 14.2 Å and 19.8 Å, respectively, by Zhao et al [11].

spatial extension. Also, one should notice that the crossing of the two calculated Lb = 20 Å
and Lb = 40 Å GaAs–Ga0.7Al0.3As SCDQW exciton binding energies occurs for a larger
value of the SCDQW well width in our results than in the calculation by Zhao et al [11].
In order to further investigate this, we compare in figure 2, for two different SCDQW barrier
widths, the fractional-dimensional 1s direct exciton present results for the binding energies with
the calculated variational exciton binding energies by Westgaard et al [9] (without mixing
of excitonic states), and apart from a small shift (�1 meV), both calculations are in quite
good agreement. Also note that, for an Lb = 20 Å SCDQW, results for the exciton binding
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Figure 4. Fractional-dimensional theoretical results (solid curves) for the magnetic-field
dependence of the 1s-like heavy-hole exciton energy shift for both a 99 Å wide GaAs–Ga0.7Al0.3As
SQW (a) and a 170 Å wide GaAs–Ga0.77Al0.23As SQW (b). The corresponding experimental data
are from Zhao et al [11] (open squares) and Aksenov et al [4] (full squares).

energies by Westgaard et al [9] are much smaller than the calculations by Zhao et al [11],
in the available range of SCDQW well widths, in agreement with our fractional-dimensional
results. Of course, as the present fractional-dimensional approach is not derived from an
energy-minimum principle, one should bear in mind that having around 1 meV of ‘additional
binding energy’ does not imply that we have a ‘better’ wavefunction than in the calculation
by Westgaard et al [9].

The present fractional-dimensional results for the difference in energy between the 1s- and
2s-like direct heavy-hole exciton binding energies are shown in figure 3 in comparison with the
experimental PLE measurements by Zhao et al [10, 11]. Although we obtain the same trend
as in the experimental data, the agreement between theoretical calculations and experiment is
only fair.

The fractional-dimensional approach may also be used to analyse the effect of applied
magnetic fields on the exciton peak position in a PL or PLE experiment. The behaviour of
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Figure 5. Magnetic-field dependence of the 1s-like heavy-hole exciton energy shift in a GaAs–
Ga0.7Al0.3As SCDQW with a 14.2 Å barrier and 99 Å wells. The solid line was calculated within the
present fractional-dimensional approach whereas the open squares correspond to the experimental
values by Zhao et al [11].

excitons in a magnetic field [1] depends very much on the strength of the applied field. In
the low-field case, i.e. when the cyclotron energy of the electrons and holes is smaller than
the exciton binding energy, the exciton shows a quadratic, diamagnetic energy shift [5, 6] with
increasing magnetic field essentially given by [5], in the case of quantum wells under magnetic
fields applied perpendicularly to the growth direction,

"E(B) = γB2 (3.1)

with

γ = e2

8µwc2
〈ρ2〉 (3.2)

where the expectation value of the square of the in-plane electron-hole separation is with
respect to the zero-magnetic-field state and γ is the diamagnetic coefficient. On the other
hand, in the high-field case the cyclotron energy of the electron–hole pair is larger than the
exciton binding energy, and the cyclotron motion becomes dominant, leading to Landau levels
for electrons and holes [2, 6]. Therefore, the field-produced energy shift of the exciton peak
position becomes essentially linear in the field strength.

We have used the fractional-dimensional approach and equations (3.1) and (3.2) to evaluate
the magnetic-field dependence of the 1s-like exciton diamagnetic shift for the case of two
isolated GaAs–Ga1−xAlxAs SQWs (cf figure 4), and a GaAs–Ga0.7Al0.3As SCDQW with
a 14.2 Å barrier and 99 Å wells (see figure 5). For the 170 Å wide GaAs–Ga0.77Al0.23As
SQW (figure 4(b)) we found good overall agreement with experimental data by Aksenov
et al [4] in the range of magnetic-field strengths considered. In the case of the 99 Å wide
GaAs–Ga0.7Al0.3As SQW (figure 4(a)) and the GaAs–Ga0.7Al0.3As SCDQW (figure 5), the
agreement with measurements by Zhao et al [11] is quite good in the low-field regime, and, for a
magnetic-field strength of B � 4 T, one finds a clear deviation from the quadratic diamagnetic
shift. A similar behaviour was also very recently found by Jaschinski et al [6] in the case of
In0.53Ga0.47As–InP QWs.
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Figure 6. Well-width dependence of the 1s-like heavy-hole exciton diamagnetic coefficient
for a GaAs–Ga0.7Al0.3As SQW (a) and a 14.2 Å wide-barrier GaAs–Ga0.7Al0.3As SCDQW
(b). Fractional-dimensional results of the present work are presented as solid curves whereas
experimental data are from Rogers et al [2] (full squares), Zhao et al [11] (full dots), Ossau et al
[7] (up triangles) and Miura et al [7] (down triangles).

The well-width dependence of the 1s-like heavy-hole exciton diamagnetic coefficient γ (cf
equations (3.1) and (3.2)) was evaluated for both GaAs–Ga1−xAlxAs SQWs and SCDQWs, and
theoretical fractional-dimensional results are shown in figure 6, in comparison with available
experimental data [2, 7, 11]. The diamagnetic coefficient obtained by Zhao et al [11] was
inferred from experimental measurements of the exciton peak energies and a fitting procedure
with quadratic and linear terms in B. From the data by Zhao et al [11], it is straightforward to
verify that a quadratic-only fitting would give larger values for the γ coefficient both in SQWs
and SCDQWs than the ones displayed in figure 6. Moreover, the spread of ‘experimental’
diamagnetic coefficients from different studies is quite apparent, as already pointed out by
Duggan [3]. Therefore, if one considers the uncertainty in the experimental determination of
the diamagnetic coefficient, the agreement between calculated fractional-dimensional results
and ‘experimental’ diamagnetic coefficients may be considered as fair. We have also evaluated
the heavy-hole 1s-like exciton diamagnetic coefficient as a function of well width of GaAs–
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Figure 7. Heavy-hole 1s-like exciton diamagnetic coefficient as a function of well width of GaAs–
Ga1−xAlxAs SQWs for different values of the total (electron + hole) potential offset. The solid
lines correspond to the present calculation whereas the dashed curves reproduce the theoretical
results of Walck and Reinecke [5]. The bulk limit of 110.2 µeV T−2 is also shown as a horizontal
dashed line.

Ga1−xAlxAs SQWs for different values of the total electron + hole potential offset, and
compared (see figure 7) the present theoretical fractional-dimensional calculations with the
variational results by Walck and Reinecke [5]. Apart from a shift, the general trend is the
same. Note that results from Walck and Reinecke [5] are larger than the ones obtained in the
present work and much larger than the experimental results in figure 6(a). At the moment
we do not know of a simple physical explanation of why the present fractional-dimensional
results might be better than the variational calculations by Walck and Reinecke [5]. We believe,
however, that the fractional-dimensional space approach may be extended to explicitly include
magnetic-field effects in the Hamiltonian in both the cases of shallow-impurity and exciton
states in GaAs–Ga1−xAlxAs QWs and superlattices, and then one would obtain results beyond
the quadratic magnetic-field dependence. The extension, however, is a non-trivial one, and
work is in progress in that respect [30].

4. Conclusions

In conclusion, we have performed a quite detailed study of some properties of direct
heavy-hole exciton states and diamagnetic shifts in semiconductor GaAs–Ga1−xAlxAs QWs
and SCDQWs. The fractional-dimensional space formalism was extended to the case of
GaAs–Ga1−xAlxAs SCDQWs. In this approach, the real anisotropic ‘exciton + double
QW’ semiconductor system is modelled, for each exciton state, into an effective fractional-
dimensional isotropic environment. In contrast to previous studies using the same fractional-
dimensional scheme, in the present work the fractional dimension is chosen using an
analytical procedure, and no ansatz or fitting with experiment is involved. Fractional-
dimensional theoretical results were obtained for the binding energies of 1s-like direct heavy-
hole excitons and the energy difference between 1s- and 2s-like direct heavy-hole exciton states
in GaAs–Ga1−xAlxAs SCDQWs. Theoretical results were also obtained for the magnetic-
field dependence of the 1s-like heavy-hole exciton energy shift and the exciton diamagnetic
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coefficient in QWs and SCDQWs. Finally, fractional-dimensional theoretical results are shown
to be in fair agreement with available experimental measurements.
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[28] Reyes-Gómez E, Oliveira L E and de Dios-Leyva M 1999 J. Appl. Phys. 85 4045
[29] Thoai D B T 1991 Physica B 175 373
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